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ABSTRACT

Direct numerical simulations of compressible, homogeneous, turbulent shear flows are
used to evaluate Reynolds stress models. Three pressure-strain models, which are either
linear, quadratic, or cubic in the anisotropy tensor, are considered. Dilatational dissipation
and pressure-dilatation models are inserted into the Reynolds stress closure. Results show
that variable-density extensions of incompreséible pressure-strain correlation models do not
correctly capture the compressibility effects seen in the direct simulations. In particular, the
increase in the anisotropy of normal stresses and the reduction in the shear stress are not
reproduced by any of the models. Also, the use of the incompressible form of the dissipation-

rate equation to determine the solenoidal part of the dissipation is found to be questionable.



1. INTRODUCTION

A resurgence of interest in hypersonics has emerged, which is driven by advanced new
applications such as high-speed civil transport aircraft, supersonic combustion ramjets and
transatmospheric vehicles. These new applications bring into prominence some critical items
that have limited the effectiveness of computational fluid dynamics codes used as tools for
hypersonic system design. Chief among these is compressible turbulence modeling. Several
turbulence models of varying degrees of complexity have been developed that range from the
simplest algebraic or zero-equation model to the full Reynolds stress closure. Most of these
models are simple extensions of their incompressible counterparts, where compressibility
effects are incorporated into the models through changes in the mean density. However,
many studies have shown that this type of model is unable to reproduce some features of
flows that depend on compressibility, such as the reduction in the spreading rate of the
compressible mixing layer as the Mach number increases. Thus, a better understanding of
the effects of compressibility on flow turbulence is needed to improve current turbulence
models.

Recently, direct numerical simulation (DNS) of compressible, homogeneous turbulent
shear flow by Blaisdell (1990) has shown that the growth of turbulent kinetic energy decreases
as the Mach number increases. The reduction is due to two compressibility terms: the
dilatational dissipation and pressure-dilatation correlation, which explicitly appear in the
turbulent kinetic energy and mean temperature equations. Zeman (1990, 1991) and Sarkar
(1991, 1992) have modeled the additional terms; the inclusion of the two terms in two-
equation turbulence models leads to a significant improvement in predicting the reduction
in spreading rate with increasing Mach number.

In this paper, an assessment of Reynolds stress models in predicting compressible ho-
mogeneous shear flow is conducted with the DNS of Blaisdell (1990). Three pressure-strain
correlation models, which are variable-density extensions of their incompressible counter-
parts, are considered. These models are either linear, quadratic, or cubic in the anisotropy
stress tensor. The dilatational dissipation and pressure-dilatation correlation, which are the
only explicit compressibility terms, are inserted into the Reynolds stress closure. Particular
attention will be paid to the ability of each turbulence model to predict equilibrium states

accurately.

2. MATHEMATICAL FORMULATION

In compressible, turbulent flows, two averaging techniques are commonly used to define

the mean and fluctuating parts of a turbulent variable. Usually, conventional Reynolds



averages are used for the pressure p and the density p; Favre averages are used for the
velocity u; and the temperature T'. Thus, any dependent variable f can be decomposed into

mean and fluctuating parts in two ways:
F=F+f f=7+1" (1)

where the overbar represents the Reynolds average, the tilde denotes the Favre average, and
the primes and double primes are, repectively, the deviations from the Reynolds average and

the mass-weighted average. The Favre average f is a density-weighted Reynolds average
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We will consider the problem of compressible, homogeneous shear flow. In this problem,
an initially decaying, compressible turbulence is subjected to a uniform shear S with the

corresponding mean velocity gradients
Ui = S61:0; (3)

The flow is assumed to be an ideal gas, which satisfies the equation of state p = ﬁRT. The
evolution equation of the mean temperature, derived from the energy equation, is given by
DT
Cym—=E—T 4
" Dt ? ()
where ¢ is the total dissipation rate, 74 = p'd’/p is the specific pressure-dilatation, and ¢, is
the specific heat at constant volume.

For a compressible homogeneous shear flow at high Reynolds numbers, the Favre-averaged

Reynolds stress tensor 7;; = ufu is a solution of the transport equation

DTi‘ 2 2
Dtj = P +1L; - 565;'3‘ + gﬂ'déij (5)
where II;; is the deviatoric part of the pressure-strain correlation and P; = —Tixljk — TikUik

is the production term. Here, the Kolmogorov hypothesis of isotropy is invoked to model

the dissipation rate tensor.

The transport equation for the turbulent kinetic energy K = uu/2 is obtained by

contracting indices in Eq. (5) as

DK
D; —P et (6)
where P = —7;ii;; is the turbulence production.



As shown by Zeman and Sarkar, the dissipation rate of compressible homogeneous flow
at high Reynolds numbers can be decomposed into a solenoidal or incompressible part, ¢,
and a compressible part, ¢4 as

E=€Es+ &g (7)

where ¢, = vwiw! and ¢4 = :%FW given that ¥ is the kinematic viscosity and w! is the
fluctuating vorticity. Direct simulations of compressible, homogeneous shear flows show
that €, is largely independent of compressibility and that the growth of turbulent kinetic
energy decreases as the Mach number increases because of the augmented contribution of
the compressible dissipation. Therefore, £; is modeled and €, is obtained by solving the

incompressible form of the dissipation equation

DE, 63 ~ 532
= —Co1 = 7ijtlij — Cea— (8)

Dt K K

where C.y and C,; are closure coefficients that are model dependent. The models of the

dilatational dissipation and pressure-dilatation correlation considered are

Sarkar
e. = 0.5M?e, 9)

pd = —0.155PM, + 0.2pc, M? (10)

where M, = \/2K/yRT is the turbulent Mach number and 7 is the ratio of specific heats (=
1.4).

Zeman
ec = 0.75(1 — exp(—((M; — 0.1)/0.6)?))e, (11)
—7 — \~1 F—PE D 17
!l — %) = —0.5 —(— 12
P = () (T = 0 (12)
with K
M? + M

PE= 252K7RT(W) (14)

Finally, we consider incompressible pressure-strain models, which are modeled as linear
functions of the mean velocity gradients with coefficients that depend algebraically on the
anisotropy tensor and the turbulent dissipation rate. Compressibility effects are incorporated
through changes in density. Three models will be analyzed: the Launder, Reece, and Rodi
(LRR) model (1975); the Fu, Launder, and Tselepidakis (FLT) model (1987); and the



Speziale, Sarkar, and Gatski (SSG) model (1991). These models are either linear (LRR),
quadratic (SSG), or cubic (FLT) in the anisotropy tensor

1 2

L

by = 5y (m = 3K64) (15)

and are assumed to be only functions of the anisotropy b and the symmetric and antisym-

metric parts of the mean velocity gradient

. 1 (0u 0y
S,] - 5 <5—;]— + al‘l) (16&)
.1 (0u 0y

The high Reynolds number forms of these models are

Launder, Reece, and Rodi (LRR)

Y . . 3 . R 9
I;;(b,S, W) = —Cyeb;; + C2K(Si; — LSkkbi;) + Cal (bikSik + bjeSik — gkaSkléij)
+ CaK (b Wik + 0 W)
(17a)
where
C] = 3, Cz = 08,
Cy = 1.745, Cy = 1.309 (17)

Fu, Launder, and Tselepidakis (FLT)

.. 1
M,(b,§, W) = 1201IVFe [bij+g(b,~kbkj— gbk,bkléijﬂ

P U S 2 .
+ 51& (5i; — é‘skk) + 5IX (bz'ksjk + bjxSik — gbklsklézj)
26

B[\'(bikﬁ/jk + bjkl’i’rik)

+

4 . . . .
+ glﬁ [(bikbklsjl + bixbrrSit — 2bix Skiby; — 3bxi Swibis)
+ (bikbkzwﬂ + bjkbuwa)]

—4rK [8”(51ij1< +bjkWik) +12 (bikbklwlmbmj + bjkbklwzmbmi)]
(18a)



where

1 1
IT = = Sbisbij, 111 = bbb

r=07 F=1+91]+2711] (18b)

Speziale, Sarkar, and Gatski (SSG)

. 1
Hij(ba S; W = _(015 + C{P)b” + 026 (b,‘kbkj — gbklbkléij>

+ (Cg - C:; b,‘jb,’j IX’(S','J' — S'kk)

!
3 (19a)
+C4yK (bikgjk + b1 Six — gbklgkléij>
+ Cs K (b Wik + b Wir)
where P = --TMS'H is the turbulence production and
C, =34, C; =180, C, = 4.2,

C3=0.8, C; =130, Cy = 1.25, (19b)

As mentioned previously, the closure coefficients Ce1,Ceq, and C, for the turbulent dis-
sipation rate equation (Eq. (8)) are model dependent. The values for these coefficients are

given by
Launder, Reece, and Rodi (LRR)

Co = 144, Cey = 1.90 (20a)

Fu, Launder, and Tselepidakis (FLT)

Csl = 145, ng = 190 (20b)

Speziale, Sarkar, and Gatski (SSG)

Cer = 1.44, Cop = 1.83 (20c)



In the LRR and SSG models, the dissipation rate ¢;; is modeled through the usual isotropic

%561']‘, whereas in the FLT model the tensor dissipation rate explicitly

accounts for anisotropic effects:

assumption &;; =

2
£y = gsﬁéij + 2(1 - \/F)Sb,'j (21)

where I has been defined previously in Eq. (18b).

Calculations of compressible, homogeneous shear flows show that the Reynolds stresses,
the dissipation rate, and the mean temperature grow exponentially, so that the anisotropy
tensor b;;, the shear parameter SK/c, and the turbulent Mach number M, achieve equilib-
rium values that are independent of the initial conditions. Therefore, the system of equations

for 5, €, and T' is nondimensionalized and is recast into an equivalent set of equations for

£s/SK, b;;, K, and M, as follows:

DK~ € — Ty

D = (@b + (o AT (16)

%ﬂf = Mt"’(;;()(g—(6;“)(1+0—M3)) (17)
pere) = (53 (€ = (D) = (Ca= () (18)
11?)1:-3 - 21;;1 * (% N 3‘,25"1)(5%) - (2 - ,:—8+ :_j)(si;?)b“ (19)

where t* = St is the dimensionless time, K* = K/Ky, Ko is the initial value of turbulent
kinetic energy, and ¢ = ¥(y — 1)/2. An additional equation, Eq. (12), is needed when
Zeman’s model is used.

This system of nonlinear ordinary differential equations associated with each Reynolds stress

model is solved subject to the initial conditions

€
K* =1, — =045, M} = 0.094
{ SR 5, M = 0.094,
b]l - 0124, b22 = —0106, blg = —‘0187

at time ¢* = 0, which is taken from the DNS of Blaisdell (run Shal92) at t* = 2. The reason
for this is that the initial conditions of the DNS at t* = 0 are nonphysical. See Speziale
et al. (1992). The system was integrated with a fourth-order Runge-Kutta scheme. The
equilibrium states for each turbulence model are obtained numerically. A comparison of the

predictions of the models with the DNS data will be made in the next section.



4. RESULTS AND DISCUSSION

The predictions of the SSG, LRR, and FLT models with Sarkar’s compressibility correc-
tions will be compared with the DNS results of Blaisdell (run Shal92).

Figures 1 and 2 show the time evolution of the turbulent kinetic energy and the turbulent
Mach number, predicted by the SSG model for two initial turbulent Mach numbers M,y =
0 and My = 0.307. These figures clearly show that a variable-density extension of the
SSG model is not capable of capturing the decrease of the growth rate of turbulent kinetic
energy as the turbulent Mach number increases. Explicit compressibility corrections are
needed to predict the trends of the DNS. However, the model SSG overpredicts the growth
rate of solenoidal and total dissipation (Figs. 3 and 4), which accounts for the overly large
equilibrium value of the shear parameter (Fig. 5). Also, the differences in the predictions
between turbulence models are shown (Figs. 6 - 10). The SSG and FLT models reproduce
the results fairly well. However, the LRR model performs poorly because it was not well
calibrated in incompressible, homogeneous shear flow. See Abid and Speziale (1993).

In Figures 11 - 13, the model predictions for the time evolution of Reynolds stress
anisotropies are shown. All of the models substantially underpredict the Reynolds stress
anisotropies in comparison with the results of the DNS. Also, the relaxation of b;; to their
equilibrium states has not been captured by all the models. As pointed out by Speziale,
Gatski, and Sarkar (1992), the long time behavior of turbulence models is tied to their
ability to predict the equilibrium values.

In fact, all the models predict exponential long time behavior, i.e., K, ¢, T, and Tij
proportional to exp(At*), where Ay, is the equilibrium growth rate given by
€ — Ty
N

The equilibrium states obtained from the various turbulence models are compared with

Aoo = —2(b12)oo — ( (20)

the DNS data of Rogers et al. (1986) for incompressible homogeneous shear flow (table
I) and the DNS data of Blaisdell (1990) for compressible homogeneous shear flow with
Sarkar’s model (table II). Several observations in regard to these results are noteworthy: the
Reynolds stress anisotropies (b;;)c and the shear parameter (SK/e,)., are underpredicted
by all models, particularly (b11)c; the shear stress (b;2) is erroneously predicted to be
insensitive to the compressibility effects; and the SSG and LRR models predict the observed
trend that (by1)e increases as a function of the turbulent Mach number M, (however the
FLT model erroneously predicts the opposite trend of the DNS data). Similar conclusions
are drawn when Zeman’s model is used. See table III.

All of the turbulence models are clearly incapable of properly accounting for the effects

of compressibility on turbulent shear flow. The failure of the Reynolds stresses to predict
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the increase in the anisotropy of normal stresses and the reduction in the shear stress is
partly due to the use of the incompressible pressure-strain correlation models. As shown by
Blaisdell and Sarkar (1993), the contribution of the compressibility to the pressure-strain
correlation is large and must be taken into account.

Another deficiency of the turbulence models considered in this study lies in the use of
the incompressible form of the dissipation equation to obtain the solenoidal part of the
dissipation rate. The results presented in tables I and II show clearly that (P/es)e is
erroneously predicted to be sensitive to the compressibility effects. When an equilibrium

state is achieved, Eq. (18) gives
P CEQ -1 1 Eq — Ty

(D = o = =) e1)

s

where the first term in the right side represents the equilibrium value of P /¢, in incompress-
ible, homogeneous shear flow. Equation (21) clearly shows that the erroneous prediction
of (P/es)oo is directly tied to the solenoidal dissipation equation. This conclusion can be
reached in other ways.

The value of (P/2,)s can be determined from Eq. (17) as

P Ed— T
(Do = (L4 ()1 + o M) (22)
The combination of Eqs. (21) and (22) leads to
P Cea
e = 23
(53) (Cel_l+H_—alM‘?;) ( )

The above equation, which is independent of the dilatational dissipation and pressure-
dilatation models, shows that (P/e,). cannot be insensitive to the compressibility effects
as seen in the direct simulations, otherwise Eq. (23) will predict nonphysical values for M,
(Myo = 1.7 when (P/z,)s = 1.84). Note that the system of Eqs. (16)-(19) will predict

nonphysical results for My, if the explicit compressibility equations are not included.

4. CONCLUDING REMARKS

Three Reynolds stress models have been evaluated for the problem of compressible, homo-
geneous shear flow. The dilatational dissipation and pressure-dilatation correlation models,
formulated by Zeman and Sarkar, have been inserted in the Reynolds stress closure. Com-
parisons between the predictions of the various models and the direct numerical simulation
of Blaisdell have been made. '

All three Reynolds stress models fail to capture the compressibility effects seen in the

direct simulations. In particular, the increase in anisotropy of the normal stresses and the

9



reduction in the shear stress are not reproduced by any of the models. This result is partly
due to the use of variable density extensions of incompressible pressure-strain models. Thus,
dilatational effects on the pressure-strain correlation must be identified and accounted for in
compressible turbulence modeling.

An analysis of the predictions of the equilibrium states has shown that use of the in-
compressible form of the dissipation to determine the solenoidal dissipation rate is another
source of inaccuracy in the predictions. In particular, the erroneous prediction of (P/es)oo
is directly tied to the solenoidal dissipation equation.

The present study indicates the need for further direct numerical simulations of com-
pressible, homogeneous shear flows. Such simulations could be used to distinguish between
compressibility and low Reynolds number effects and to provide more information on the

equilibrium states.
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Equilibrium LRR SSG FLT DNS

Values Model Model Model Data
b11 0.155 0.219 0.208 0.215
b12 -0.187 -0.164 -0.146 -0.158
baa -0.121 -0.146 -0.144 -0.153
b33 -0.004 -0.073 -0.064 -0.062

SK/e, 5.34 5.77 6.84 5.70

PJe, 2.0 1.88 2.0 1.80

Table 1. Predicted Equilibrium Values for Incompressible Homogeneous Shear Flow.
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Equilibrium LRR SSG FLT DNS

Values Model Model Model Data
b11 0.166 0.230 0.189 0.424
bi2 -0.187 -0.165 -0.148 -0.118
ba2 -0.130 -0.148 -0.138 -0.236
b3z -0.036 -0.082 -0.051 -0.188

SK/e, 3.77 4.11 4.77 7.82
M, 0.65 0.60 0.65 0.51

Ples 1.41 1.36 1.41 1.84

Table 2. Predicted Equilibrium Values for Compressible Homogeneous Shear Flow with
Sarkar’s Model.
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Equilibrium LRR SSG FLT DNS
Values Model Model Model Data
by1 0.167 0.231 0.187 0.424

b12 -0.191 -0.167 -0.148 -0.118

bz -0.131 -0.148 -0.137 -0.236

bas -0.036 -0.083 -0.050 -0.188
SK/e,s 3.59 3.95 4.61 7.82
M, 0.48 0.45 0.48 0.51
P/e, 1.41 1.36 1.41 1.84

Table 3. Predicted Equilibrium Values for Compressible Homogeneous Shear Flow with

Zeman’s Model.
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Figure 1. Comparison of the predictions of the SSG model for the time evolution of the

turbulent kinetic energy with the DNS results of Blaisdell.

15



0.7 ! 1 ! l I ] 1

0.6

0.5

0.4

My = 0.307
- My =0.

0 10 20 30 40

Figure 2. Comparison of the predictions of the SSG model for the time evolution of the
turbulent Mach number with the DNS results of Blaisdell.
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Figure 3. Comparison of the predictions of the SSG model for the time evolution of the

solenoidal dissipation-rate with the DNS results of Blaisdell.
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Figure 4. Comparison of the predictions of the SSG model for the time evolution of the total

dissipation-rate with the DNS results of Blaisdell.
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Figure 5. Comparison of the predictions of the SSG model for the time evolution of SK/e,
with the DNS results of Blaisdell.
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Figure 6. Comparison of the predictions of the LRR, SSG and FLT models for the time
evolution of the turbulent kinetic energy with the DNS results of Blaisdell.
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Figure 7. Comparison of the predictions of the LRR, SSG and FLT models for the time
evolution of the turbulent Mach number with the DNS results of Blaisdell.
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Figure 8. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the solenoidal dissipation-rate with the DNS results of Blaisdell.
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Figure 9. Comparison of the predictions of the LRR, SSG and FLT models for the time
evolution of the total dissipation-rate with the DNS results of Blaisdell.
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Figure 10. Comparison of the predictions of the LRR, SSG and FTL models for the time
evolution of SK/e, with the DNS results of Blaisdell.
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Figure 11. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component b;; of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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Figure 12. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component by, of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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Figure 13. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component by, of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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